数据仓库工具箱 维度建模权威指南(第3版)_数据库教程

数据仓库工具箱 维度建模权威指南(第3版)_数据库教程

资源名称:数据仓库工具箱  维度建模权威指南(第3版)

内容简介:

随着The Data Warehouse Toolkit(1996)第1版的出版发行,Ralph Kimball为整个行业引入了维度建模技术。从此,维度建模成为一种被广泛接受的表达数据仓库和商业智能(DW/BI)系统中数据的方法。该经典书籍被认为是维度建模技术、模式和最佳实践的权威资源。

这本《数据仓库工具箱(第3版)——维度建模权威指南》汇集了到目前为止最全面的维度建模技术。本书采用新的思路和最佳实践对上一版本进行了全面修订,给出了设计维度模型的全面指南,既适合数据仓库新手,也适合经验丰富的专业人员。

《数据仓库工具箱(第3版)——维度建模权威指南》涉及的所有技术都基于作者实际从事DW/BI的设计经验,通过实际案例加以描述。

主要内容 ◆ 实用设计技术——有关维度和事实表的基本和高级技术

◆ 14个案例研究,涉及零售业、电子商务、客户关系管理、采购、库存、订单管理、会计、人力资源、金融服务、医疗卫生、保险、教育、电信和运输等

◆ 为12个案例研究提供了数据仓库总线矩阵示例

◆ 需要避免的维度建模陷阱和错误

◆ 增强的缓慢变化维度(SCD)技术类型0~类型7

◆ 用于处理参差不齐的可变深度层次和多值属性的桥接表

◆ 大数据分析的最佳实践

◆ 与业务参与方合作、交互设计会议的指南

◆ 有关Kimball DW/BI项目生命周期方法论的概论

◆ 对ETL系统和设计思考的总结

◆ 构建维度和事实表的34个ETL子系统和技术

资源目录:

第1章 数据仓库、商业智能及维度建模初步 1

1.1 数据获取与数据分析的区别 1

1.2 数据仓库与商业智能的目标 2

1.3 维度建模简介 5

1.3.1 星型模式与OLAP多维数据库 6

1.3.2 用于度量的事实表 7

1.3.3 用于描述环境的维度表 9

1.3.4 星型模式中维度与事实的连接 11

1.4 Kimball的DW/BI架构 14

1.4.1 操作型源系统 14

1.4.2 获取-转换-加载(ETL)系统 14

1.4.3 用于支持商业智能决策的展现区 16

1.4.4 商业智能应用 17

1.4.5 以餐厅为例描述Kimball架构 17

1.5 其他DW/BI架构 19

1.5.1 独立数据集市架构 19

1.5.2 辐射状企业信息工厂Inmon架构 20

1.5.3 混合辐射状架构与Kimball架构 22

1.6 维度建模神话 22

1.6.1 神话1:维度模型仅包含汇总数据 23

1.6.2 神话2:维度模型是部门级而不是企业级的 23

1.6.3 神话3:维度模型是不可扩展的 23

1.6.4 神话4:维度模型仅用于预测 23

1.6.5 神话5:维度模型不能被集成 24

1.7 考虑使用维度模型的更多理由 24

1.8 本章小结 25

第2章 Kimball维度建模技术概述 27

2.1 基本概念 27

2.1.1 收集业务需求与数据实现 27

2.1.2 协作维度建模研讨 27

2.1.3 4步骤维度设计过程 28

2.1.4 业务过程 28

2.1.5 粒度 28

2.1.6 描述环境的维度 28

2.1.7 用于度量的事实 29

2.1.8 星型模式与OLAP多维数据库 29

2.1.9 方便地扩展到维度模型 29

2.2 事实表技术基础 29

2.2.1 事实表结构 29

2.2.2 可加、半可加、不可加事实 29

2.2.3 事实表中的空值 30

2.2.4 一致性事实 30

2.2.5 事务事实表 30

2.2.6 周期快照事实表 30

2.2.7 累积快照事实表 30

2.2.8 无事实的事实表 31

2.2.9 聚集事实表或OLAP多维数据库 31

2.2.10 合并事实表 31

2.3 维度表技术基础 31

2.3.1 维度表结构 31

2.3.2 维度代理键 32

2.3.3 自然键、持久键和超自然键 32

2.3.4 下钻 32

2.3.5 退化维度 32

2.3.6 非规范化扁平维度 32

2.3.7 多层次维度 32

2.3.8 文档属性的标识与指示器 33

2.3.9 维度表中的空值属性 33

2.3.10 日历日期维度 33

2.3.11 扮演角色的维度 33

2.3.12 杂项维度 33

2.3.13 雪花维度 33

2.3.14 支架维度 34

2.4 使用一致性维度集成 34

2.4.1 一致性维度 34

2.4.2 缩减维度 34

2.4.3 跨表钻取 34

2.4.4 价值链 34

2.4.5 企业数据仓库总线架构 35

2.4.6 企业数据仓库总线矩阵 35

2.4.7 总线矩阵实现细节 35

2.4.8 机会/利益相关方矩阵 35

2.5 处理缓慢变化维度属性 35

2.5.1 类型0:原样保留 35

2.5.2 类型1:重写 35

2.5.3 类型2:增加新行 36

2.5.4 类型3:增加新属性 36

2.5.5 类型4:增加微型维度 36

2.5.6 类型5:增加微型维度及类型1支架 36

2.5.7 类型6:增加类型1属性到类型2维度 36

2.5.8 类型7:双类型1和类型2维度 36

2.6 处理维度层次关系 37

2.6.1 固定深度位置的层次 37

2.6.2 轻微参差不齐/可变深度层次 37

2.6.3 具有层次桥接表的参差不齐/可变深度层次 37

2.6.4 具有路径字符属性的可变深度层次 37

2.7 高级事实表技术 37

2.7.1 事实表代理键 37

2.7.2 蜈蚣事实表 38

2.7.3 属性或事实的数字值 38

2.7.4 日志/持续时间事实 38

2.7.5 头/行事实表 38

2.7.6 分配的事实 38

2.7.7 利用分配建立利润与损失事实表 38

2.7.8 多种货币事实 39

2.7.9 多种度量事实单位 39

2.7.10 年-日事实 39

2.7.11 多遍SQL以避免事实表间的连接 39

2.7.12 针对事实表的时间跟踪 39

2.7.13 迟到的事实 40

2.8 高级维度技术 40

2.8.1 维度表连接 40

2.8.2 多值维度与桥接表 40

2.8.3 随时间变化的多值桥接表 40

2.8.4 标签的时间序列行为 40

2.8.5 行为研究分组 40

2.8.6 聚集事实作为维度属性 41

2.8.7 动态值范围 41

2.8.8 文本注释维度 41

2.8.9 多时区 41

2.8.10 度量类型维度 41

2.8.11 步骤维度 41

2.8.12 热交换维度 42

2.8.13 抽象通用维度 42

2.8.14 审计维度 42

2.8.15 最后产生的维度 42

2.9 特殊目的模式 42

2.9.1 异构产品的超类与子类模式 43

2.9.2 实时事实表 43

2.9.3 错误事件模式 43

第3章 零售业务 45

3.1 维度模型设计的4步过程 46

3.1.1 第1步:选择业务过程 46

3.1.2 第2步:声明粒度 46

3.1.3 第3步:确定维度 47

3.1.4 第4步:确定事实 47

3.2 零售业务案例研究 47

3.2.1 第1步:选择业务过程 49

3.2.2 第2步:声明粒度 49

3.2.3 第3步:确定维度 50

3.2.4 第4步:确定事实 50

3.3 维度表设计细节 53

3.3.1 日期维度 53

3.3.2 产品维度 56

3.3.3 商店维度 59

3.3.4 促销维度 60

3.3.5 其他零售业维度 62

3.3.6 事务号码的退化维度 63

3.4 实际的销售模式 63

3.5 零售模式的扩展能力 64

3.6 无事实的事实表 65

3.7 维度与事实表键 66

3.7.1 维度表代理键 66

3.7.2 维度中自然和持久的超自然键 68

3.7.3 退化维度的代理键 68

3.7.4 日期维度的智能键 68

3.7.5 事实表的代理键 69

3.8 抵制规范化的冲动 70

3.8.1 具有规范化维度的雪花模式 70

3.8.2 支架表 72

3.8.3 包含大量维度的蜈蚣事实表 72

3.9 本章小结 74

第4章 库存 75

4.1 价值链简介 75

4.2 库存模型 76

4.2.1 库存周期快照 76

4.2.2 库存事务 79

4.2.3 库存累积快照 80

4.3 事实表类型 81

4.3.1 事务事实表 81

4.3.2 周期快照事实表 82

4.3.3 累积快照事实表 82

4.3.4 辅助事实表类型 83

4.4 价值链集成 83

4.5 企业数据仓库总线架构 84

4.5.1 理解总线架构 84

4.5.2 企业数据仓库总线矩阵 85

4.6 一致性维度 89

4.6.1 多事实表钻取 89

4.6.2 相同的一致性维度 89

4.6.3 包含属性子集的缩减上卷一致性维度 90

4.6.4 包含行子集的缩减一致性维度 91

4.6.5 总线矩阵的缩减一致性维度 91

4.6.6 有限一致性 92

4.6.7 数据治理与管理的重要性 92

4.6.8 一致性维度与敏捷开发 94

4.7 一致性事实 94

4.8 本章小结 95

第5章 采购 97

5.1 采购案例研究 97

5.2 采购事务与总线矩阵 98

5.2.1 单一事务事实表与多事务事实表 98

5.2.2 辅助采购快照 101

5.3 缓慢变化维度(SCD)基础 101

5.3.1 类型0:保留原始值 102

5.3.2 类型1:重写 102

5.3.3 类型2:增加新行 104

5.3.4 类型3:增加新属性 106

5.3.5 类型4:增加微型维度 108

5.4 混合缓慢变化维度技术 110

5.4.1 类型5:微型维度与类型1支架表 110

5.4.2 类型6:将类型1属性增加到类型2维度 111

5.4.3 类型7:双重类型1与类型2维度 112

5.5 缓慢变化维度总结 113

5.6 本章小结 114

第6章 订单管理 115

6.1 订单管理总线矩阵 116

6.2 订单事务 116

6.2.1 事实表规范化 117

6.2.2 维度角色扮演 117

6.2.3 重新审视产品维度 119

6.2.4 客户维度 120

6.2.5 交易维度 122

6.2.6 针对订单号的退化维度 123

6.2.7 杂项维度 124

6.2.8 应该避免的表头/明细模式 125

6.2.9 多币种 126

6.2.10 不同粒度的事务事实 128

6.2.11 另外一种需要避免的表头/明细模式 129

6.3 发票事务 130

6.3.1 作为事实、维度或两者兼顾的服务级性能 131

6.3.2 利润与损益事实 131

6.3.3 审计维度 133

6.4 用于订单整个流水线的累积快照 134

6.4.1 延迟计算 136

6.4.2 多种度量单位 137

6.4.3 超越后视镜 138

6.5 本章小结 138

第7章 会计 139

7.1 会计案例研究与总线矩阵 139

7.2 总账数据 141

7.2.1 总账周期快照 141

7.2.2 会计科目表 141

7.2.3 结账 141

7.2.4 年度-日期事实 143

7.2.5 再次讨论多币种问题 143

7.2.6 总账日记账事务 143

7.2.7 多种财务会计日历 144

7.2.8 多级别层次下钻 145

7.2.9 财务报表 145

7.3 预算编制过程 146

7.4 维度属性层次 148

7.4.1 固定深度的位置层次 148

7.4.2 具有轻微不整齐的可变深度层次 149

7.4.3 不整齐可变深度层次 149

7.4.4 不规则层次中的共享所有权 152

7.4.5 随时间变化的不规则层次 153

7.4.6 修改不规则层次 153

7.4.7 其他不规则层次的建模方法 154

7.4.8 应用于不规则层次的桥接表方法的优点 156

7.5 合并事实表 156

7.6 OLAP角色及分析方案包 157

7.7 本章小结 158

第8章 客户关系管理 159

8.1 客户关系管理概述 160

8.2 客户维度属性 162

8.2.1 名字与地址的语法分析 162

8.2.2 国际姓名和地址的考虑 164

8.2.3 客户为中心的日期 165

8.2.4 作为维度属性的聚集事实 166

8.2.5 分段属性与记分 166

8.2.6 包含类型2维度变化的计算 169

8.2.7 低粒度属性集合的支架表 169

8.2.8 客户层次的考虑 170

8.3 应用于多值维度的桥接表 171

8.3.1 稀疏属性的桥接表 172

8.3.2 应用于客户多种联系方式的桥接表 173

8.4 复杂的客户行为 173

8.4.1 客户队列的行为研究分组 173

8.4.2 连续行为的步骤维度 175

8.4.3 时间范围事实表 176

8.4.4 使用满意度指标标记事实表 177

8.4.5 使用异常情景指标标记事实表 178

8.5 客户数据集成方法 178

8.5.1 建立单一客户维度的主数据管理 179

8.5.2 多客户维度的局部一致性 180

8.5.3 避免对应事实表的连接 180

8.6 低延迟的实现检查 181

8.7 本章小结 182

第9章 人力资源管理 183

9.1 雇员档案跟踪 183

9.1.1 精确的有效和失效时间范围 184

9.1.2 维度变化原因跟踪 185

9.1.3 作为类型2属性或事实事件的档案变化 185

9.2 雇员总数周期快照 186

9.3 人力资源过程的总线矩阵 187

9.4 分析解决方案软件包与数据模型 188

9.5 递归式雇员层次 189

9.5.1 针对嵌入式经理主键变化的跟踪 190

9.5.2 上钻或下钻管理层次 190

9.6 多值技能关键字属性 191

9.6.1 技能关键字桥接表 191

9.6.2 技能关键字文本字符串 192

9.7 调查问卷数据 193

9.8 本章小结 194

第10章 金融服务 195

第11章 电信 207

第12章 交通运输 217

第13章 教育 229

第14章 医疗卫生 239

第15章 电子商务 249

第16章 保险业务 265

第17章 Kimball DW/BI生命周期概述 285

第18章 维度建模过程与任务 303

第19章 ETL子系统与技术 313

第20章 ETL系统设计与开发过程和任务 351

第21章 大数据分析 373

资源截图:

1.png

分享到 :
相关推荐

发表评论

登录... 后才能评论